

Confidentia

SEAT NUMBER:	
STUDENT ID:	
SURNAME:	
GIVEN NAMES:	

CHEM1102 Chemistry 1B

Final Examination Semester 2, 2014

Time Allowed: Three hours + 10 minutes reading time

This examination paper consists of 24 pages

INSTRUCTIONS TO CANDIDATES

- 1. This is a closed book exam.
- 2. A simple calculator (programmable versions and PDA's not allowed) may be taken into the exam room.

Make	Model

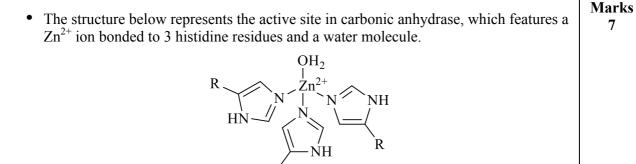
- 3. The total score for this paper is 100. The possible score per page is shown in the adjacent table.
- The paper comprises 30 multiple choice questions and 11 pages of short answer questions. ANSWER ALL QUESTIONS.
- 5. Follow the instructions on page 2 to record your answers to the multiple choice questions. Use a dark lead pencil so that you can erase errors made on the computer sheet.
- 6. Answer all short answer questions in the spaces provided on this question paper. Credit may not be given where there is insufficient evidence of the working required to obtain the solution.
- 7. Take care to write legibly. Write your final answers in ink, not pencil.
- 8. Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.

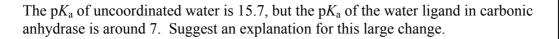
	Marks				
Page(s)	Max	Gained		Marker	
2.9				MCQ	
10	5				
11	5				
12	6				
13	5				
15	9				
16	7				
17	8				
18	6				
20	7				
21	4				
23	8				
Total	100				
Check	Total				

Marks • The cubic form of boron nitride (borazon) is the second-hardest material after 5 diamond and it crystallizes with the structure shown below. The large spheres represent the nitrogen atoms and the smaller spheres represent boron atoms. From the unit-cell shown above, determine the empirical formula of boron nitride. Answer: Determine the oxidation state of the boron atoms. Answer: The cubic form of boron nitride is more thermally stable in air than diamond. Provide a reasonable explanation for this observation.

Marks A simplified phase diagram for iron is shown below, with the solid part divided into 5 the body-centred cubic (BCC) and face-centred cubic (FCC) phases. P (atm) 100 BCC FCC liquid 10 form form 1 10-2 10-4 10-6 gas 10-8 10-10 1000 1500 2000 2500 3000 $T(^{o}C)$ Which form of iron is stable at room temperature and pressure? If molten iron is cooled slowly to around 1200 °C and then cooled rapidly to room temperature, the FCC form is obtained. Draw arrows on the phase diagram to indicate this process and explain why it leads to the FCC form as a metastable phase. The line dividing the BCC and FCC forms is almost, but not quite vertical. Predict which way this line slopes and explain your answer.

	Solution A. The pK_a of benzoic acid is 4.20.	
	pH =	
Other than water, what are the 1	major species present in solution A?	
Solution B consists of a 0.050 N Calculate the pH of Solution B.	M aqueous solution of ammonia, NH ₃ , at 25 °C. The pK_a of NH ₄ ⁺ is 9.24.	
	pH =	
Ther than water what are the		
Other than water, what are the 1	pH = major species present in solution B?	
)ther than water, what are the 1		


THIS QUESTION CONTINUES ON THE NEXT PAGE.


Page Total:

Write the equation for the reaction that ammonia?	t occurs when benzoic acid reacts with	Ma
Write the expression for the equilibrium ammonia?	m constant for the reaction of benzoic acid with	
What is the value of the equilibrium co ammonia?	onstant for the reaction of benzoic acid with	
	Answer:	
	tion that results from dissolving equimolar	
amounts of benzoic acid and ammonia		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • The salt calcium oxalate, CaC₂O₄·H₂O, is sparingly soluble. Write down the 9 chemical equation for its dissolution in water and the expression for K_{sp} . What is the molar solubility of calcium oxalate? $K_{\rm sp} = 2.3 \times 10^{-9}$ Answer: If additional calcium oxalate is added to a saturated solution, what is the effect on $[Ca^{2+}(aq)]?$ Following blood donation, a solution of sodium oxalate is added to remove Ca²⁺(aq) ions which cause the blood to clot. The concentration of $Ca^{2+}(aq)$ ions in blood is 9.7×10^{-5} g mL⁻¹. If 100.0 mL of 0.1550 M Na₂C₂O₄ is added to 100.0 mL of blood, what will be the concentration (in mol L⁻¹) of Ca²⁺ ions remaining in the blood? Answer:

When studying zinc-containing metalloenzymes, chemists often replace Zn^{2+} with Co^{2+} . Using the box notation to represent atomic orbitals, work out how many unpaired electrons are present in the Zn^{2+} and Co^{2+} ions.

Suggest why it is useful to replace Zn^{2+} with Co^{2+} when studying the nature of the active site in carbonic anhydrase.

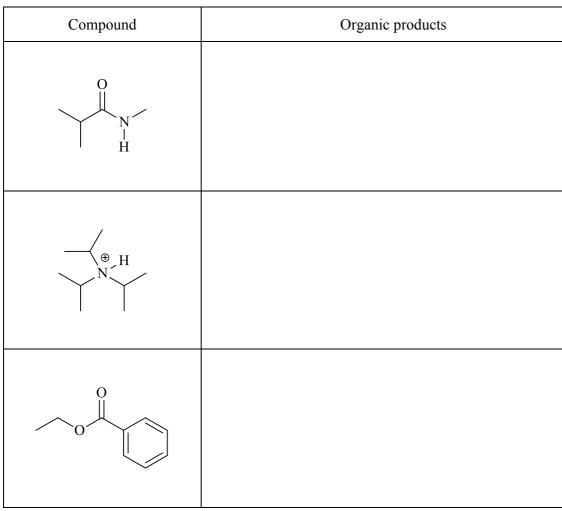
Suggest two differences in the chemistry of Zn^{2+} and Co^{2+} ions that may affect the reactivity of the cobalt-containing enzyme.

Page Total:

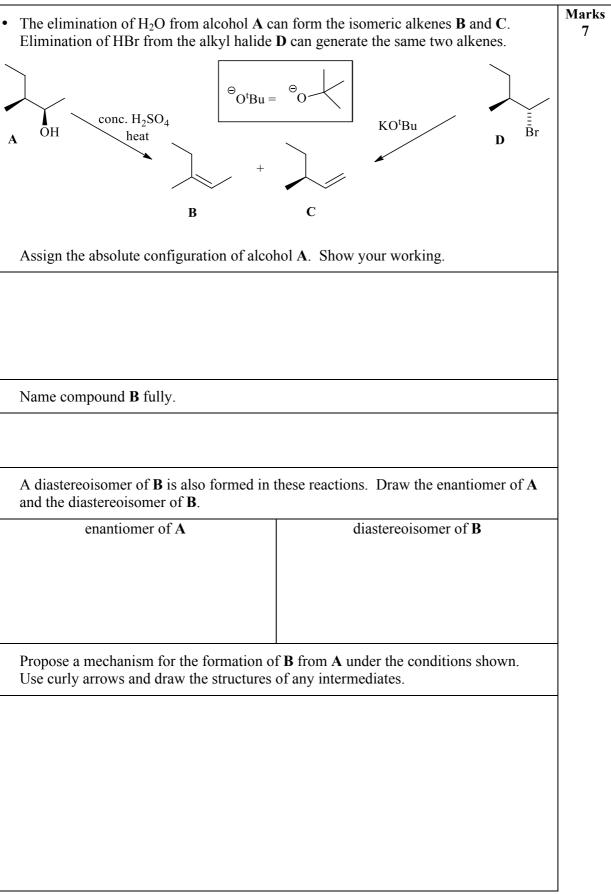
• Complete the following table.

Marks 8

• Complete the following table.				
STARTING MATERIAL	REAGENTS/CONDITIONS	THE MAJOR ORGANIC PRODUCT(S)		
	1. NaBH₄ 2. H [⊕] / H ₂ O			
ОН	hot concentrated H ₂ SO ₄			
		Br		
	dilute aqueous H ₂ SO ₄	ОН		
	$\operatorname{Cr_2O_7}^{2\Theta}/\operatorname{H}^{\oplus}$			
	2 equivalents of Cl_2			
ОН	SOC12			


Marks

3


• Draw the structure of (*S*)-pent-4-en-2-ol.

When (S)-pent-4-en-2-ol reacts with bromine, Br_2 , two stereoisomers are formed. Draw the structure of both products.

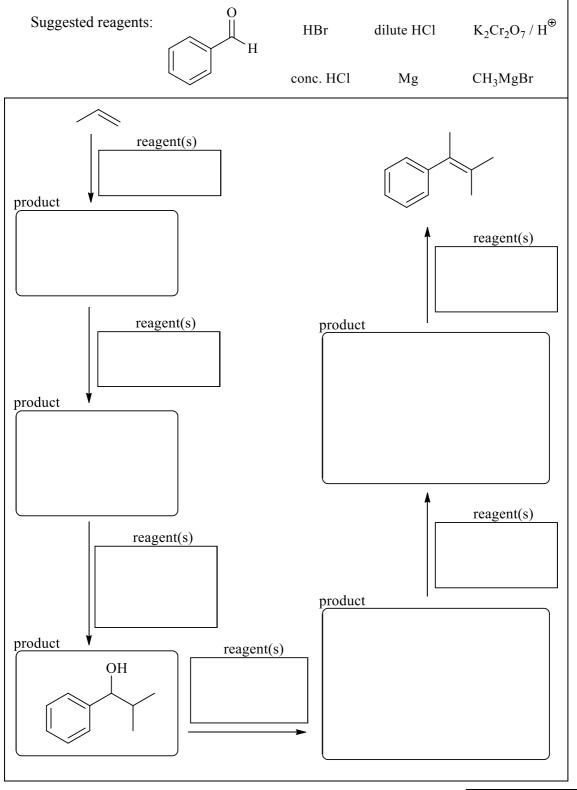
• Draw the structure of the organic product(s) formed when each of the following compounds is treated with 4 M sodium hydroxide. The first reaction requires heating.

3

THIS QUESTION CONTINUES ON THE NEXT PAGE.

Page Total:

Explain why compound **C** is the minor product of this reaction.


Propose a mechanism for the formation of C from D under the conditions shown. Use curly arrows and draw the structures of any intermediates. Compound **C** is the major product formed from **D** under these conditions. What would be the major product if the enantiomer of **D** were exposed to the same reaction conditions?

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks

8

• Propene can be converted into 1,2-dimethyl-1-phenylpropene using a sequence of 6 reactions. Demonstrate your knowledge of Grignard reactions by suggesting a plausible sequence. Make sure you draw the correct structure for each intermediate product and clearly indicate the reagent(s) required for each reaction. The following list of suggested reagents is sufficient to accomplish all necessary reactions, but you may use other reagents if you wish. One of the intermediates is shown for you.

THIS PAGE IS FOR ROUGH WORKING ONLY.

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \text{ kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	mal fract	ions	Deci	mal multi	ples
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	Μ
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р	10^{12}	tera	Т

Standard Reduction Potentials, E°

Reaction	E° / V	
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82	
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72	
$MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_{2}O$	+1.51	
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50	
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36	
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23	(+0.82 at pH = 7)
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18	
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96	
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96	
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92	
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80	
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77	
$I_2(aq) + 2e^- \rightarrow 2I^-(aq)$	+0.62	
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53	
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34	
$\operatorname{BiO}^{+}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Bi}(\operatorname{s}) + \operatorname{H}_{2}\operatorname{O}$	+0.32	
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15	
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by d	lefinition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04	
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13	
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14	
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24	
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40	
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44	
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74	
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76	
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83	(-0.41 at pH = 7)
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89	
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68	
$\operatorname{Sc}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Sc}(s)$	-2.09	
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36	
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71	
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87	
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04	

Thermodynamics & Equilibrium	Electrochemistry
$\Delta U = q + w = q - p\Delta V$	$\Delta G^{\circ} = -nFE^{\circ}$
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	Moles of $e^- = It/F$
$\Delta G = \Delta G^{\circ} + RT \ln Q$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta G^{\circ} = -RT \ln K$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta_{\rm univ}S^\circ = R\ln K$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$\ln \frac{K_2}{K_1} = \frac{-\Delta H^\circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$	$= (RT/nF) \times \ln K$
$\frac{1}{K_1} = \frac{1}{R} = \frac{1}{T_2} = \frac{1}{T_1}$	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_w = pK_a + pK_b = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$
Radioactivity	Kinetics
$t_{\frac{1}{2}} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$
$A = \lambda N$	$k = A e^{-Ea/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{o} - kt$
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Mathematics	Quantum Chemistry
If $ar^2 + br + a = 0$ then $r = -b \pm \sqrt{b^2 - 4ac}$	$E = h\mathbf{v} = hc/\lambda$
If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$\lambda = h/mv$
$\ln x = 2.303 \log x$	$E = -Z^2 E_{\rm R}(1/n^2)$
Area of circle = πr^2	$\Delta x \cdot \Delta(mv) \ge h/4\pi$
Surface area of sphere = $4\pi r^2$	$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$
Volume of sphere = $\frac{4}{3} \pi r^3$	$T \lambda = 2.898 \times 10^6 \text{ K nm}$
Miscellaneous	Colligative Properties & Solutions
$A = -\log \frac{I}{I}$	$\Pi = cRT$
$A = -\log \frac{I}{I_0}$	$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$
$A = \varepsilon c l$	c = kp
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	$\Delta T_{\rm f} = K_{\rm f} m$
$\int \frac{1}{4\pi\varepsilon_0 r} \frac{1}{4\pi\varepsilon_0 r} r^{1/A}$	$\Delta T_{\rm b} = K_{\rm b} m$

ACTINOIDS	LANTHANOIDS	1 итотностех Н 1.008 3 итлиная 1.008 3 итлиная 1.008 3 итлиная 1.008 3 итлиная 1.008 3 итлиная 1.008 1.008 2.2.99 1.9 реотулязеном К 3.7 К 1.32.91 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К 1.32.91 К К К К К К К К К К К К К	1
89 летичим Ас [227.0]	1	4 ввериллен Be 9.012 12 12 24.31 20.012 0.012 12 12 12 12 12 12 12 12 20.012 12 20.012 12 21 22 12 20.012 21.2 22.31 20.02 Carean Sr 87.62 87.62 88 57 87.62 88 57 88.8 57 88.8 89 88 89 89 80 81 127.34 127.34	2
90 тноким Тћ 232.04	58 Секим Се 140.12	21 22 sc.vonum Sc Sc Tit Sc Tit 39 40 YTTRAIM Zir W Zir S7-71 72 57-71 72 S7-71 72 Mittage 178.49 178.49 103 Rift 178.49 Rift 1261	3
91 Реотастичим Ра [231.0]	59 реказеорумисм Рг 140.91		IJ
92 URANIUM U 238.03	60 Neodymium Nd 144.24	24 спиомини Ст 52.00 42 могларемим Мо 95.94 74 тиховеким Мо 95.94 74 183.85 106 seamorcium Sg [266]	6
93 Neptunium Np [237.0]	61 рекометниом Рт [144.9]		7
94 ритомим Ри [239.1]	62 samarium Sm 150.4	26 100 76 76 76 000 101.07 76 100.2 108 108 108 108 108 108 108	8
95 Americium Am [243.1]	63 Ешкорним Е ц 151.96	27 Собельст Собельст Собельст Собельст Собельст Собельст Собельст Собельст Собельст Собельст Собельст 102.91 102.91 102.22 1092.22	9
96 сиким Ста [247.1]	64 салосыми Gd 157.2:	28 NICKEL	10
97 веккешли В к [247.1]	-	29 Coperate Cu 63.55 47 81.947 47 107.87 79 60.15 47 107.87 107.87 111 111 108.87 82 82 82 82 82 82 82 82 82 82	11
	-	30 200.59 112.40 112.40 112.20 112.20 112.20 200.59 112.20 112.20 200.59	12
98 CALIFORNUM Cf [252.1]		5 Boreo B 10.81 13 ALLANIAN B 10.81 10.81 13 ALLANIAN B 10.81 13 ALLANIAN B 10.81 13 49 9.72 69.72 204.37	13
99 EINSTEINIUM ES [252.1]	67 Ногмпим Но 164.93	6 сливом Санком С С С С С С С С С С С С С С С С С С С	14
100 Fermium Fm [257.1]	68 еквим Е г 167.26	7 NITHOGEN N 14.01 15 Р 14.01 15 Р 30.97 30.97 33 Аказис А. 8 121.75 83 83 83 83 83 83 83 83 83 83	15
101 меньелечим Md [256.1]	69 тнилим Тт 168.93	8 0 0 0 16.00 16 5 32.07 34 8 32.07 32.07 34 8 8 8 78.96 78.96 127.60 127.	16
102 ^{Nobellum} No [259.1]	70 Уттеквим Үb 173.04	9 FLIORINE F F 19.00 17 CILIORINE CILIORINE CILIORINE S5.45 35.45 35.45 35.45 35.45 35.45 S79.90 F 126.90 S79.90 S7	17
103 LAWRENCIUM Lr [260.1]	71 LUTETIUM LU 174.97	2 merina He 4.003 Ne 20.18 10 Ne 20.18 Ne 20.28 Ne Ne 20.28 Ne 20 Ne 20.28 Ne 20.28 Ne 20.28 Ne 20.28 Ne 20.28 Ne 20.28 Ne Ne 20.28 Ne Ne 20 Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne	18

PERIODIC TABLE OF THE ELEMENTS

CHEM1102